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COORDINATE SPACE FORM OF INTERACTING 
REFERENCE RESPONSE FUNCTION OF JELLIUM 

MODEL OF AN ELECTRON LIQUID 

A. HOLAS 

Iizstitutr of Physical Chemistrj, of the Polish Academy o f  Sciences, Kasprzuktr 
44,  0 1  -224 War,Su\V. P o l a d  

M. P. TOSI 

Scuolu Normale Superiore, Piuzza dei Caualieri 7 ,  1-56126 Pisa, I t o l y  

The interacting reference response function j ( , ( k )  of jelliuni in k space is defined, according to Niklasson 
(1974), in terms of the momentum distribution ~ ( p )  of the interacting electron liquid in a similar way as 
the Lindhard function x , , (k )  in terms of the Fermi distrlbution n , ( p ) .  Here the Fourier transform F, ( r )  of 
j ( , ( k )  is investigated. Using the known analytic behaviour of i i ( p ) ,  the siilall and large r forms of F, arc 
exhibited explicitly. In ;in Appendix. i t  is shown tha t  ii suitablc model of ~ ( p )  can be constructed which 
interpolates between these limits. Some brief comments arc added concerning the representation of F , ( r )  
in terms of the Green function. 

K E Y  WORDS: Moinentum distribution, interacting electron liquid. 

1. INTRODUCTION 

The exact linear density response function ~ ( k ,  (o) of the jelliuin model of an interac- 
ting electron liquid is customarily written in the form of an RPA-like expression 
modified by the presence of the local field factor for exchange and correlation. The 
non-interacting (Lindhard) response function ~ , , ( k ,  (0)  plays the role of a reference 
function in this expression. If,  however, it is replaced by X,(k,o))-the interacting 
reference response function ( IRRF)  defined by Niklasson' in a similar way as 
~ , , ( k , co )  but with the ideal Fermi momentum distribution n,(p) replaced by the true 
momentum distribution n(p)-then the accompanying local field factor is much 
weaker in the large-k region. It tends t o  a constant at  large k ,  as compared with the 
local field factor accompanying the Lindhard function which, as shown by Holas,' is 
asymptotically proportional to k 2 .  
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104 A. HOLAS ern1 

In a recent paper3 the interacting linear response function of the jellium model 
has been studied in relation to the local field factor for exchange and correlation. 
The present work lies in the same general area. 

1 .I 
In k or reciprocal space, the IRRF (in the static limit w = 0 which is of interest only 
here) is defined’ (see also Holas2) as 

Dejinition of interacting reference response function in k space 

where n ( p )  is the momentum distribution of the interacting electron fluid and we 
have set h = 1. Owing to the isotropy of the homogeneous phase of jellium, the 
angular integration in  eqn. (1.1) can be carried out to yield: 

When the momentum distribution n ( p )  is replaced by the non-interacting result- 
namely the Fermi distribution 

with Fermi momentum k,. related to the electron density p by k : =  3 n 2 p ,  one 
obtains the well-known Lindhard result 

1 (2k,.)2 - k 2  k + 2k,. 
In ~ 

8 k k ,  Ik-21,)1’ 

In the following section, we shall investigate the coordinate space response 
function, F , ( r )  say, which is the Fourier transform of z r (k ) ,  namely 

F,(r )  = __ d‘kexp(i k.r)X,(k) 
(2743 ‘ S  

The second step in eqn. (1.5) follows readily after again performing the angular 
integration. 
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RESPONSE FUNCTION OF ELECTRON L I Q U I D  105 

2. COORDINATE-SPACE RESPONSE FUNCTION F ,  (Y) 

Using eqn. (1.2) for xI ( k )  in eqn. ( I  .5) we can employ the definite integral 

given by Gradshteyn and Ryzhik4 to obtain the r space form of the IRRF, namely 

Of course, n ( p )  depends on the jellium density p = 3/(4nr,3), where r y  is the mean 
interelectronic spacing. In the homogeneous phase n ( p )  tends to n,(p) in eqn (1.3) as 
r y + O  and Daniel and Vosko5 have used many-body perturbation theory to study 
the form of n(p) in the regime of small r, .  But in the density range corresponding to 
simple metals, with 2 < r y  < 6 in units of the Bohr radius u,, we cannot determine 
n(p) analytically, though numerical data now exist from quanta1 Monte Carlo 
simulation.' 

Inserting the Fermi distribution n,(p) in eqn. (2.2) the well known result of March 
and Murray' for free electrons follows: 

mkj . , j , (2k fr )  
27c3 r2 

F,(r) = - __ ~ 

where j,(x) is the first-order spherical Bessel function [sin(.) - .xcos(x)]/.x2. 

2.1 Small-r expansion of respnnse,fiinctinn F ,  ( r )  

It will be convenient in 
F,(r) by 

(2.3) 

what follows to introduce the function A,(r )  related to 

2n3r2 
A , ( r )  = - - F , ( r )  

m 

Evidently, the small-r properties of ,4,(r) are determined by the behaviour of n(p) 
at large momenta, and this is known to be 

(2.5) UH 

P 
n ( p )  = + higher-order terms 

with us = ( m i ~ , , ) ~ y ( O ) .  Knowing the form (2.5) the derivatives of A,(r )  at r = 0 can be 
calculated as far as the sixth derivative and the results are collected in Appendix I .  
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106 A. HOLAS e t u l .  

The seventh and higher derivatives cannot be evaluated without detailed knowledge 
of the large-p behaviour of n(p) going beyond that explicitly shown in eqn (2.5). In 
particular, these derivatives may become infinite for some forms of n(p). But in 
Appendix 2, a model for n(p)  is set up which is analytical as p -+ co and which 
satisfies the property (2.5). The corresponding A, ( r )  is analytical at r = 0. 

Using eqns (Al . l ) - (Al .8) ,  the following asymptotic expansion is obtained: 

8 U T ) r 2  + - m 2 (  T 2 ) r 4 -  2 r 5  + ... 
nr 15 45 np 

The first three terms in the square brackets are as given by March and T o ~ i , ~  the 
term of 0(r5) being evaluated beyond their study. The normalization condition 
S d 3 p n ( p )  = j d 3 p n , , ( p )  = 4n3p has been utilized above, and the average of the nth 
power of the kinetic energy is given as 

We turn next to the large-r expansion of F,(r ) ,  

2 . 2  Long-runge hehuviour of F,(r)  

Since A,(r)  in eqn.(2.4) can be readily rewritten in the form of a one-dimensional 
Fourier transform 

one can apply immediately the methods developed by Holas and March.8 These 
were based on the Lighthill' technique and were used explicitly to analyze the 
long-range behaviour of the total correlation function y(r) - 1 in jellium, having a 
form analogous to that in eqn. (2.8). 

The momentum distribution n ( p )  is known in the homogeneous phase to have a 
discontinuity (reduction by a jump) Z ,  at p = k ,  and, most probably, discontinuities 
in its derivatives there. The form of n ( p )  may be expressed generally as 

n(p)  = sgn(p - k,) + analytical part 

where the coefficient h,] = -Z,/2. Therefore the oscillatory part of the large-r asymp- 
totic expansion is 

A y C ( r ) =  2 I m { [ i  J = o  (k,h,+ j b , , l ) ( ~ ) ' + ' ] e x p ( 2 i k , r ) ]  
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R E S P O N S E  F U N C T I O N  OF E L E C T R O N  L I Q U I D  107 

k ,h2  + 2 h ,  
= 2 cos ( 2 k f )  [F - ' 

(2r)3 

Because of the theta function present in eqn. (2.8), the integrand is non-analytic at  
p = 0. This may lead to a non-oscillatory contribution to the large-r expansion. 
Assuming the following expansion of n ( p )  at p = 0, 

we obtain 

(2.1 1) 

(2.12) 

It should be noted that only the odd terms in the power series expansion (2.11) 
contribute to the long-range expansion (2.12), with the leading term being of order 
r - 3  if the first derivative of n ( p )  at p = 0 is non-zero. 

Thus, one has the following asymptotic large-r expansion for the interacting 
response function: 

(2.13) 

This has a leading term [cos(2kfr)]/r3, which is due to the discontinuity in n ( p )  at 
p = k,. This is the same type of behaviour as exhibited by the March-Murray 
non-interacting function F,](r) in eqn. (2 .3) ,  but one can expect the coefficient in that 
function multiplying the [cos(2k,r)]/r3 term at large r t o  be reduced by the 
electron-electron interactions since the discontinuity in n ( p )  a t  k, is Z ,  ( 1 for r ,s)O.  

3. DISCUSSION A N D  SUMMARY 

In Appendix 1 of March and Tosi3 the non-interacting response function F,, is 
written in terms of the Green function. Knowledge of the exact momentum distribu- 
tion function n ( p )  in the homogeneous phase of jelliiim determines the interacting 
reference response function completely because of eqn. (2.2). In Appendix 3, there- 
fore, a brief summary is given of the way in which n ( p )  can be expressed in terms of 
the Green function. 

To summariLe, the main results of the present work are the expression (2.2) for the 
interacting reference response function F, ( r )  in the form of a single integral, and the 
small-r. and large-r. expansions of this function given in  eqns. (2.6) and (2.13) 
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108 A. HOLAS e t a / .  

respectively. In addition, a model form of n ( p )  has been set up in eqn. (A2.1) in 
Appendix 2, which leads to the model for F , ( r )  in eqn. (A2.7) interpolating between 
these two limiting forms. 
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APPENDIX 1. LOW-ORDER DERIVATIVES OF A,(r )  at r = 0 

The following results are immediately found from eqn. (2.4): 

and 

(A1.1) 

(A1.2) 

(A1.3) 

(A1.4) 

(A 1.5) 
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RESPONSE FUNCTION OF ELECTRON LIQUID 

Evaluation of the sixth derivative needs some care. We can write 

I09 

where the momentum p,, has such a large value that n ( p )  for p > p ,  is accurately 
represented by the leading term of the expansion (2.5). The second integral 
square brackets in eqn. (A 1.6) is equal to [ S i ( E )  - Si(2rp,,)], where S i ( x )  
so-called integral sine function, 

in the 
is the 

(A 1.7) 

with S i ( x )  = n/2 and Si(0) = O .  Thus the limit of the result (A1.6) for r-+O is given by 

APPENDIX 2. EVALUATION OF F , ( r )  USING A M O D E L  n(p)  

Let us consider the following model momentwn distribution function, 

(A1.8) 

(A2.1) 

I t  obviously satisfies the property (2.5),  being also analytical at p = x. Of its five 
parameters, k ,  and have obvious meaning, while r ,  /l and ;I can be determined 
from three requirements on n ( p ) :  

( i )  it satisfies the normalization condition formulated under eqn. (2.6), which now 
takes the form 

(A2.2) 

( i i )  it reproduces the value of ( T ) ,  which is quite accurately known from dif-ferenti- 
ation of the correlation energy of the interacting electron gas, 

(A2.3) 
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110 A. HOLAS et al. 

(iii) i t  reproduces the discontinuity Z,, also available with reasonable accuracy, 

C( + k ; . / l =  Z,. (A2.4) 

After inserting the model n(p) ,  eqn. (A2.1) into eqn. (2.4) all integrations can be 
performed analytically. The result is 

and 

(A2.6) 

The latter result was obtained with the help of tables4 under the assumption that 
y > 0. I t  should be noted that A ; ( r )  is analytical at r = 0, in spite of the behaviour 
n,(p) z p-' + O(p-'O) at large p .  Of course A,A(r) is analytical at r = o too. 

Finally, we have the following model response function, 

(A2.7) 

It can be readily verified that the small-r expansion of this function (A2.7) agrees 
with the small-r expansion (2.6), while its large-r behaviour agrees with the expan- 
sion in eqn. (2.13). It should be noted that the contribution due to A ; ( r )  is exponen- 
tially small at large r,  and that non-oscillatory terms are absent because even powers 
only enter the small-p expansion of the model n(p)  in eqn (A2.1). 

APPENDIX3. REPRESENTATION OF n(p)  IN TERMS OF THE GREEN 
FUNCTION 

Knowing the exact n ( p )  we have the exact F , ( r )  through eqm(2.2). But (see, for 
example, Ziesche and Lehmann") the momentum distribution can be expressed in 
the form 

(A3.1) 

with 6 a positive infinitesimal. Here C is a contour in the upper half of the complex- 
w plane and G ( p , t )  is the one-particle propagator (Green function) 
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KESPONSb F UNCTION OF ELECTRON LIQIJII) I l l  

G ( p , o )  is simply the Fourier transform of G ( p , t ) ,  while is the time ordering 
operator. 

The interacting Green function G ( p ,  (11) can be expressed by means of Dyson's 
equation in terms of the free-electron Green function G,,(p, ( 1 ) )  and the mass operator 
Z(p, ( 1 ) ) :  

r 7 -  1 

from which the discontinuity 2,  is obtained as 

(A3.3) 

Thus the Appendix in the work of March and Tosi3 could be generalized to the 
many-body case. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
1
6
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1


